Numerical algorithm for Ginzburg-Landau equations with multiplicative noise: Application to domain growth

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Simulation of Ginzburg-Landau-Langevin Equations

This work is concerned with non-equilibrium phenomena, with focus on the numerical simulation of the relaxation of non-conserved order parameters described by stochastic kinetic equations known as GinzburgLandau-Langevin (GLL) equations. We propose methods for solving numerically these type of equations, with additive and multiplicative noises. Illustrative applications of the methods are prese...

متن کامل

Domain Decomposition: a Blowup Problem and the Ginzburg{landau Equations

In two of our recent projects, the technique of domain decomposition plays a crucial role in the numerical integration of the partial diierential equations. In our problems, the local behavior varies because of the nonlinear and singular nature of the equations. Attempts to introduce diierent length scales did not lead to improvement. We found that diierent forms of the equations have to be use...

متن کامل

Limiting Vorticities for the Ginzburg-landau Equations

We study the asymptotic limit of solutions of the Ginzburg-Landau equations in two dimensions with or without magnetic field. We first study the Ginzburg-Landau system with magnetic field describing a superconductor in an applied magnetic field, in the “London limit” of a Ginzburg-Landau parameter κ tending to ∞. We examine the asymptotic behavior of the “vorticity measures” associated to the v...

متن کامل

Dimension for Stochastic Ginzburg–Landau Equations

We consider a randomly forced Ginzburg–Landau equation on an unbounded domain. The forcing is smooth and homogeneous in space and white noise in time. We prove existence and smoothness of solutions, existence of an invariant measure for the corresponding Markov process and we define the spatial densities of topological entropy, of measure-theoretic entropy, and of upper box-counting dimension. ...

متن کامل

Stochastic evolution equations with multiplicative Poisson noise and monotone nonlinearity

Semilinear stochastic evolution equations with multiplicative Poisson noise and monotone nonlinear drift in Hilbert spaces are considered‎. ‎The coefficients are assumed to have linear growth‎. ‎We do not impose coercivity conditions on coefficients‎. ‎A novel method of proof for establishing existence and uniqueness of the mild solution is proposed‎. ‎Examples on stochastic partial differentia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review B

سال: 1993

ISSN: 0163-1829,1095-3795

DOI: 10.1103/physrevb.48.125